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Protein  aggregation  is one  of  the  key  challenges  in the  development  of  protein  biotherapeutics.  It is  a
critical  product  quality  issue  as  well  as  a  potential  safety  concern  due  to the  increased  immunogenicity
potential  of  these  aggregates.  The  overwhelming  safety  concern  has  led  to an increased  develop-
ment  effort  and  regulatory  scrutiny  in recent  years.  The  main  purposes  of  this  review  are  to  examine
the  literature  data  on the  relationship  between  protein  aggregates  and  immunogenicity,  to  highlight
eywords:
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the  linkage  and  existing  inconsistencies/uncertainties,  and  to propose  directions  for future  investiga-
tions/development.

© 2012 Elsevier B.V. All rights reserved.
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. Introduction

Advances in biotechnology have brought to the market more
han 174 biotherapeutic drug products in the US and EU (Giezen
t al., 2008). This achievement is the result of years of painstaking
esearch and development addressing myriad discovery, quality,
reclinical, and clinical challenges. One of the key development
hallenges that has received increasing scrutiny of late, is the aggre-
ation propensity of proteins, not typically seen for small-molecule

Mahler et al., 2009; Philo and Arakawa, 2009; Wang et al., 2010;
den Engelsman et al., 2011; Zolls et al., 2012).

In addition to the quality-related consequences of protein aggre-
gation such as possible loss of protein activity and undesirable
aesthetics of drug product, soluble protein aggregates have been
shown to have significant cytotoxic effects for a variety of proteins
(Curatolo et al., 1997; Kayed et al., 2003; Poon et al., 2009). More
importantly, protein aggregation was considered “the most impor-
tant”, recognized structural change known to increase the immune
rugs. Protein aggregation has been under extensive investiga-
ion addressing a variety of aspects and issues such as aggregation

echanisms, influencing factors, formulation/process control, and
elated analytical methodologies (Chi et al., 2003; Roberts, 2003;

∗ Corresponding author at: Pfizer, Inc., 700 Chesterfield Parkway West, Chester-
eld, MO 63017, United States. Tel.: +1 636 247 2111, fax: +1 636 247 0001.

E-mail address: wei.2.wang@pfizer.com (W.  Wang).

378-5173/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ijpharm.2012.04.040
response in protein products (Hermeling et al., 2004). Reduction of
protein aggregation has been claimed to “reduce immunogenicity”
(Sauerborn et al., 2010). Immunogenicity here refers to formation of
serum anti-drug antibodies (ADAs) specific for the protein of inter-
est. Unwanted immunogenicity of a protein product potentially
makes the product less or in-effective. In worst-case scenarios, for-

mation of ADAs may  pose serious safety concerns, and can even
be life-threatening as in the cases of pure red cell aplasia (PRCA)
after administration of Eprex. This justifies the requirement of

dx.doi.org/10.1016/j.ijpharm.2012.04.040
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:wei.2.wang@pfizer.com
dx.doi.org/10.1016/j.ijpharm.2012.04.040
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valuating protein product-related immunogenicity as an integral
art of product clinical trials (Shankar et al., 2006; Kaliyaperumal
nd Jing, 2009). Immunogenicity of protein aggregates has now
ecome a topic of intensive research (Hermeling et al., 2004;
osenberg, 2006; Buttel et al., 2011).

In 2009, a group of academic scientists and FDA representatives
ublished a commentary, raising concern about the potential role of
rotein subvisible particles in product immunogenicity, specifically
hose in the size range of 2–10 �m and the lack of regulatory guide-
ines on these particles (Carpenter et al., 2009). This article elevated
he general concern for protein aggregation/particulate formation
mong regulatory agencies, healthcare professionals, and the phar-
aceutical industry as well. The following year saw a responding

ommentary on these issues by a group of “industrial” scientists
Singh et al., 2010). They generally agree to (1) the need for addi-
ional work to understand the immunogenicity impact of these
articles and (2) the need to develop methods/instruments for
onitoring particles in the range of 0.1–10 �m.  They also pointed

ut (1) the immunogenicity potential of protein aggregates is a
ebatable subject and (2) monitoring particles of <10 �m is not

 suitable test for release, stability and comparability at this time,
lthough monitoring these particles could facilitate product devel-
pment.

Notwithstanding the ongoing debate, the US FDA has been act-
ng on these concerns and significantly increased their scrutiny and
equirement on analysis of proteinaceous particles. This is exem-
lified by the following recent FDA correspondence in connection
ith both Investigational New Drug and Biological Licensing Appli-

ations.

“. . ..  . . USP <788> testing results are critical to mitigate the risk
associated with occlusion of small blood vessels and small sub-
visible particles may  pose an immunogenicity risk. Provide USP
<788> particulate testing data for in-use stability studies and an
analysis of particulates between 2 and 10 microns.”

“. . ..in addition to measuring particulates that are ≥10 �m in
size, subvisible particulates in the 2–10 �m range should also be
characterized and quantified using technique(s) that can accu-
rately estimate the amount of subvisible protein particulates
present. Sub-visible particulates in the 0.1–1 �m range should
be qualitatively assessed.”

“. . .additionally characterize the types and amounts of sub-
visible particles (2–10 �m)  in the drug product under stress
conditions, at release, and throughout the shelf-life, and also
propose an appropriate control strategy based on the risk to
product quality.”

It is clear that significant efforts are urgently needed to
ddress the increasing concern about the potential immunogenic-
ty enhancement of protein aggregates. The main purposes of this
eview is to examine the literature data on the relationship between
rotein aggregates and their immunogenicity, to highlight the
ncertainties, and to propose future directions for further inves-
igations/development.

. Immunogenicity of protein aggregates

Protein aggregates can be defined as any physically-associated
r chemically-linked non-native species of two or more pro-
ein monomers. They can generally be classified into two major
ategories—soluble (usually measurable by SEC) and insoluble (par-

iculates). Soluble aggregates cover the size range of roughly 1 to
00 nm,  and protein particulates cover subvisible (∼0.1–100 �m)
nd visible (>100 �m)  ranges. A more detailed classification of pro-
ein aggregates has been proposed (Narhi et al., 2011).
 Pharmaceutics 431 (2012) 1– 11

Do soluble protein aggregates enhance the immunogenicity
potential of a protein product? It is generally believed that a
potential linkage exists between protein aggregation and enhanced
product immunogenicity (Porter, 2001; Hermeling et al., 2004;
Rosenberg, 2006; Baker et al., 2010; Richard and Prang, 2010). Early
evidence for enhanced immunogenicity of protein aggregates was
reported in 1960s, when aggregated human �-globulin was found
to be more immunogenic than the aggregate-free form in mice in
a dose-dependent manner (Gamble, 1966). Around the same time,
clinical evidence was reported based on simple skin test of aggre-
gated vs non-aggregated human �-globulin and human serum
albumin (Christian, 1960; Ring et al., 1979). Removal of aggregates
in human �-globulin clearly reduced its clinical immunogenicity
(Weksler et al., 1970). Over the years, many other proteins have
been reported to have enhanced immunogenicity upon aggregation
under a variety of storage or stressed conditions. Table 1 lists these
proteins, including vaccine examples. Dose-dependent immuno-
genicity of protein aggregates has also been reported for a few
proteins. Based on these examples, it appears undeniable that a
linkage exists between protein aggregation and enhanced product
immunogenicity.

A widely-accepted theory for immunogenicity enhancement
by protein aggregates is the additional T cell-independent activa-
tion of B-cells through cross-linking mechanisms by repetitive and
ordered structures (conformational) in protein aggregates in native
forms (Baker and Carr, 2010; Sauerborn et al., 2010; Defrance et al.,
2011). These aggregates may  resemble “immunons”, spatially con-
tinuous clusters of haptens on a linear polymer (>100 kD in size
with >10–20 haptens spaced in 100 Angstroms) for direct B-cell
activation (receptor clustering) proposed by Dintzis (Dintzis et al.,
1976). Other studies further solidified the immunon concept and
demonstrated a minimum number of receptor sites (∼10), that
needs to be bound to a single stimulatory ligand for activation of a
B-cell (Sulzer and Perelson, 1997).

Another obvious mechanism for the enhanced immunogenic-
ity of protein aggregates is aggregation-induced structural changes
toward more foreignness, induced simply by physical intermolecu-
lar interactions, chemical linkages, or other chemical modifications.
Many chemical modifications such as methionine oxidation or
deamidation have been found in protein aggregates formed under
simple physical stress conditions (Luo et al., 2011). Thus, when
chemical degradations lead to protein aggregation and enhanced
immunogenicity, the enhancement can be attributable to several
possibilities - degradation-induced structural change, aggregation-
induced structural change, increased structural repetitiveness, or
a combination of these. Understanding the true cause of the
immunogenicity enhancement may  facilitate design or stabiliza-
tion of protein products for less immunogenicity. For example,
administration of heavily aggregated recombinant human inter-
feron �2b (rhIFN-�2b) (aged and oxidized) induced significant
formation of antibodies relative to fresh samples in both wild-type
and transgenic mice (Hermeling et al., 2006). Samples contain-
ing progressively greater fractions of aggregated (oxidized) protein
generated proportionally more antibodies in transgenic mice. Since
administration of H2O2-induced oxidation products of recombi-
nant human interferon �2b (rhIFN-�2b) induced higher IgG titers
than native forms in wild-type mice (Hermeling et al., 2005),
could the apparent high immunogenicity of aggregated rhIFN-�2b
samples be attributable partially to chemical degradation-induced
structural changes? In the evaluation of a closely related protein,
it was observed that a higher proportion of multiple sclerosis (MS)
patients developed antibodies after receiving recombinant human

IFN-�1b than IFN-�1a (Kivisakk et al., 2000). It is reasonable that
the difference in antibody response was attributed to the apparent
difference - higher amount of aggregates in IFN-�1b samples and
the structural difference (van Beers et al., 2010a). However, recent
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Table  1
Examples of protein aggregates linked to enhanced immunogenicity.

Protein Aggregate level and type Dose and administration Test model References

Soluble aggregates
Epoetin � Low amount of dimers and

other aggregates induced by
tungsten

25 IU/kg 3 times per week or
75 IU/kg weekly; SC

Anemic patients (Seidl et al., 2011)

Human �-globulin Variable levels of aggregates by
heating at 63 ◦C for 15′

5 mg;  IV Rabbits (Biro and Garcia, 1965)

Human �-globulin Variable levels of aggregates by
heating at 63 ◦C for 30′

100 �g; IP A/J mice; IP (Gamble, 1966)

Human growth hormone Variable levels of aggregates 0.1-2U 3 times per week; SC(?) Children (Moore and Leppert, 1980)
Human interferon-�2 50% dimer and very small

amount of oligomers
0.3 �g weekly for 5 weeks; IP Balb/C and

transgenic mice
(Braun et al., 1997)

Human interferon-�2b Variable levels of oxidized
aggregates

10 �g repeated dose; SC Wild-type and
transgenic mice

(Hermeling et al., 2006)

Human interferon-�1a ∼80% oligomeric or large
aggregates formed by metal
catalysis

5 �g repeated dose; IP Transgenic mice (van Beers et al., 2011)

Human interferon-�1a Small amount of mainly
non-covalent aggregates

5 �g repeated dose; IP Transgenic mice (van Beers et al., 2010a)

IFN-�2b-HSA fusion protein 20% to 42% dimers and
aggregates by shaking

100 �g twice per week for 4
weeks; SC

Mice (Zhao et al., 2009)

Insoluble aggregates or mixtures
Bovine �-globulin Insoluble aggregates by

centrifugation
2 mg adsorbed on Bentonite; IP CBA mice (Claman, 1963)

Murine growth hormone 1.2% subvisible particles (based
MFI) vs control

2 �g repeated dose; SC Mice (Fradkin et al., 2011a)

Human growth hormone
(product A & B)

5% soluble and 72% insoluble
(A) and 31% soluble through F/T

10 �g weekly for 2 weeks; SC Naive and primed
mice

(Fradkin et al., 2009)

Human interferon-�2b 17% large aggregates and 10%
insoluble formed by metal
catalysis

10 �g repeated dose; IP Wild-type &
transgenic mice

(Hermeling et al., 2005)

Human interferon-�1a More aggregates as monitored
by light scattering

0.25 �g (SC) or 0.5 �g (IN); 3
days/week for 4 or 5 weeks

C57BL/6 mice (Rifkin et al., 2011)

Protein aggregates as vaccines
Bacterial needle protein
MxiH�5

Multimers, induced with a full
length

10 �g on days 0, 14, 28; IM Balb/c mice (Barrett et al., 2010)

Hemagglutinin Trimers, induced via trimeric
motif

3 �g on days 0 and 14; SC Balb/c mice (Weldon et al., 2010)

Hepatitis B peptide antigen Multimers, derivatized with
dipalmityl-lysine

200 �g twice with Freund’s
adjuvant; SC

Rabbits (Hopp, 1984)

HIV  Tat101 protein
derivative

Disulfide bonded dimmers 5 �g twice; SC Balb/c mice (Kittiworakarn et al., 2006)

HIV  envelope protein GP120 Trimers, induced via a trimeric
motif

7-9 �g 3 times with 1X Ribi
adjuvant; SC

Balb/c mice (Yang et al., 2001)

Horse heart cytochrome c Aggregates induced by
glutaraldehyde

5 mg per animal with Freund’s
adjuvant; IV

Rabbits (Reichlin et al., 1970)

Human muscle creatine
kinase

Aggregates induced by
glutaraldehyde

150 �g per animal with
Freund’s adjuvant; IP

Balb/c mice (Man  et al., 1989)

g wit
 4; SC
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�KEI  polypeptide Oligomerized by PEGylation 100 �
week

nalysis of serum samples from 2,711 MS  patients for formation
f neutralizing antibodies revealed that the formation frequency
as greatest (35%) for Rebif (SC IFN-�1a; 44 �g thrice weekly),

east (7.5%) for Avonex (IM IFN-�1a; 30 �g once weekly), and in
etween for Betaseron (SC IFN-�1b; 250 �g every other day) and
ebif (22 �g thrice weekly) (Grossberg et al., 2011). With variation

n dose and route of administration, these results make it difficult
o attribute the difference in immunogenicity to the difference in
ggregate level and/or the structural differences (lack of the first
et, Cys-17 mutated to Ser, and lack of glycosylation in IFN-�1b).
Many protein product-related factors could influence the

mmunogenicity of a protein product, including impurities, con-
aminants, and formulation excipients (Singh, 2011). Presence of
ny potential immunogenic or tolerogenic components in test-
ng samples would complicate interpretation of the enhanced
mmunogenicity of protein aggregates. A recent study showed a

ositive correlation of immunogenicity with the amount of aggre-
ates in IFN-� in mice (Rifkin et al., 2011). The complication of
his study was the use of dodecylmaltoside, an alkylsaccharide
urfactant. Was  the reduction in immunogenicity due to a lower
h a 50 �g boost at C57BL/6 mice (Rudra et al., 2010)

degree of aggregation or any possible “protective” effect of the
alkylsaccharide surfactant? It has been known that surfactants can
bind to proteins (Randolph and Jones, 2002; Hermeling et al., 2003;
Chou et al., 2005; Villalobos et al., 2005). If this surfactant binds to
the protein, could the binding partially shield any antigenic epi-
topes on the protein, leading to less immunogenicity, somewhat
like the concept of immunogenicity reduction through protein gly-
cosylation (Fagnani et al., 1990) or pegylation (Basu et al., 2006)?
Another relevant clinical observation is the high rate of antibody
formation associated with administration of aggregate-containing
recombinant human IL-2 (Prummer, 1997). In addition to the
structural modifications (C125S mutation and lack of Ala1 and gly-
cosylation), the product (Proleukin) contains a significant amount
(0.18 mg  per vial) of sodium dodecyl sulfate, an ionic surfactant
to curb protein aggregation. Could this ionic surfactant contribute
to the immunogenicity response, as documented for other simi-

lar compounds (Katz et al., 2000; Evans et al., 2004; Mueller et al.,
2009)?

Metal ions are common process-related impurities and their
presence in protein products can alter the aggregation and
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mmunogenicity behavior (Zhou et al., 2011). It has been shown
hat metal-catalysis-induced aggregation of rhIFN-�2b (Hermeling
t al., 2005) and rhIFN-�1a (van Beers et al., 2011) generate sig-
ificant immunogenicity in transgenic mice. Tungsten pin extract
as shown to induce formation of low level of disulfide-bonded
rotein dimers and aggregate, which were proposed to be respon-
ible for the increased immunogenicity of epoetin � in clinical trials
Seidl et al., 2011). Since the reference product Eprex, with almost
0% batches containing comparable or even higher level of dimers
nd aggregates than epoetin �, did not generate any neutralizing
ntibodies in all the subjects, the type rather than level of aggre-
ates appears responsible for the breaking of immune tolerance.
ungsten-induced aggregates may  possess new epitopes, as tung-
ten alters the conformational structure of the protein (Seidl et al.,
011).

Protein aggregates, generated through different storage or
tressed conditions, may  induce different degrees of immuno-
enicity. While aggregated IFN-�1a sample (∼10% more dimers or
ligomers) through H2O2-induced oxidation was  more immuno-
enic than the native protein, GdnHCl treatment-induced aggre-
ates (70% dimers or oligomers) were not in transgenic mice (van
eers et al., 2011). Administration of aggregated rhIFN-�2b sam-
les through glutaraldehyde or heat (boiling) treatment actually
educed significantly the IgG titers relative to the native forms in
ild-type mice (Hermeling et al., 2005). Similarly, aggregated rFVIII

with a size equivalent to at least 6 rFVIII molecules), induced by
eat treatment (80 ◦C for 2 min) is less immunogenic than native
FVIII in hemophilia A mice, albeit the aggregated rFVIII appeared
o act as a distinct antigen (Purohit et al., 2006).

The different immunogenic behaviors of protein aggregates sug-
est one or more of the following explanations—(1) enhanced
mmunogenicity by oxidation-induced structural change; (2)
nhanced immunogenicity by formation of repetitive structures
n oxidation-derived aggregates; and (3) reduced immunogenic-
ty by alteration or even loss of immunogenic epitopes in protein
ggregates after different treatments. Similarly, in the evaluation of
mmunogenicity of stressed growth hormone (GH) in mice, stressed
amples of one GH product containing either 31% soluble aggre-
ates (induced by freeze/thaw) or 69% soluble aggregates (induced
y agitation) did not enhance the immunogenicity of the original
roduct (containing non-detectable level of aggregates) in terms of
nti-GH titers in both neonatally primed and naive mice (Fradkin
t al., 2009). The failure of GH aggregates to initiate an enhanced
mmunogenicity could also possibly be due to non-optimum spac-
ng of epitopes in GH aggregates as immunons, or an anergic
ehavior of GH aggregates, as immunon-like polymers could actu-
lly inhibit the B-cell activation, if binding to B-cell receptors is
on-stimulatory (Sulzer and Perelson, 1997).

All the above examples demonstrate a reasonable correlation of
nhanced immunogenicity with protein aggregation but not with
tructural features in protein aggregates, specifically responsible
or the enhanced immunogenicity. Such a correlation is difficult to
stablish given the complicated mechanisms of an immunogenic
vent and its many influencing factors. Protein aggregates gener-
ted under stressed conditions may  or may  not represent those
een in a product after long-term storage, and may  or may  not be
ore (or less) immunogenic. Therefore, immunogenicity data on

tressed protein samples, presumably strongly protein dependent,
eed to be interpreted with caution.

It would be ideal to identify the structural features in protein
nd/or protein aggregates, that are responsible for initiation of
mmunogenicity. This would allow possible reduction of immuno-

enicity (deimmunization) of protein products through mutation
f the key immunogenic site and/or insertion of tolerogenic
pitopes (Scott and De Groot, 2010; Kumar et al., 2011). It, however,
as been difficult to link clearly the potential immunogenicity of a
 Pharmaceutics 431 (2012) 1– 11

pure protein to a particular type of sequence/structure with in-silico
methods (Porter, 2001; Flower, 2009; Brinks et al., 2011; Singh,
2011). An unusual epitope on one protein may  not be recognizable
on another (Porter, 2001). Nevertheless, presence of T cell epitopes
in proteins has been considered a pre-requisite for immunogenic-
ity and these potential immunogenic sites can be screened and
modified (Bryson et al., 2010; Scott and De Groot, 2010). The mea-
sured immunogenicity potential by ex vivo EpiScreenTM showed
a reasonable correlation with the clinical immunogenicity of 16
commercial protein products (Barker, 2010). Measurement of the
binding affinity of peptides/proteins to HLA has been used to pre-
dict approximately their relative immunogenicity (Cohen et al.,
2010). Recently, scientists have attempted to examine the coin-
cidence between the aggregation-prone regions and the T-cell
immune epitopes and proposed a potential linkage between the
repetitiveness of cross � motif structure in protein aggregates and
direct B-cell activation (Kumar et al., 2011). Much more analysis and
experimental work are still needed to establish a clear relationship.

3. Immunogenicity of protein particulates

Would insoluble protein aggregates, i.e. proteinaceous particu-
lates, have higher immunogenicity potential than native proteins
or smaller aggregates? Some believe that particulate aggregates
are more immunogenic than soluble aggregates, and smaller par-
ticulates are more immunogenic than larger ones (Singh, 2011).
As shown in Table 1, protein particulates or mixtures of protein
particulates and soluble aggregates can be more immunogenic
than monomeric proteins. Particulates can enhance immunogenic-
ity through several mechanisms, including enhancement of antigen
uptake by dendritic cells, stimulation of both B and T lymphocytes,
facilitation of maturation, activation, or proliferation of dendritic
cells, and prolonged release of protein antigens (Seferian and
Martinez, 2000; Wang et al., 2008; Aline et al., 2009; Prego et al.,
2010; Jones et al., 2011).

As early as 1963, Claman clearly demonstrated a higher degree
of antibody formation to sedimented bovine �-globulin than solu-
ble protein with Bentonite in mice (Claman, 1963). Latest studies
demonstrated that particulates of recombinant murine growth
hormone (mGH) even at levels below the detection limits of SEC-
HPLC (<1%), induced immune responses in mice (Fradkin et al.,
2011a).  On the other hand, some results from a few studies on the
immunogenicity of protein particulates have not been consistent
and data interpretation seems difficult. For example, it was shown
that a freeze-thawed commercial GH product (5% soluble + 72%
particulates of <9 �m)  induced significantly higher anti-GH titers
than the unprocessed GH product containing only 2% aggregates
in naive adult mice, but interestingly, not in neonatally primed
mice (Fradkin et al., 2009). In contrast, the agitated commercial
GH (12% soluble + 42% particulates of <9 �m)  did not change the
immunogenicity of unprocessed samples in naive mice, and in fact,
decreased the immunogenicity of the unprocessed GH product in
neonatally primed mice. In addition, none of the processed and
unprocessed GH induced any detectable immunogenicity in GH
transgenic mice. The negative results challenges the capacity of
protein particulates in breaking the immune tolerance (Fradkin
et al., 2009). The variety of responses has been explained based on
the structure of epitope exposed in the aggregates, the amount of
insoluble aggregates, the need for adjuvanticity in neonatal mice
as well as in transgenic mice. In a recent study, agitated mGH
sample containing about 50% of protein particulates significantly

increased the IgG2a level, but the high-pressure treated mGH  (con-
taining only 0.08% of protein particles) generated a similar level of
IgG2a. Another observation in this study is the uncertainty of the
amount of soluble aggregates, hence their potential contribution
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o immunogenicity, as the SEC method could not detect any in all
amples, including those containing a substantial level of protein
articulates. It is not uncommon that dissociation or loss of pro-
ein aggregates takes place due to sample dilution in mobile phase
nd/or column binding during SEC analysis (Roberts et al., 2003;
jima et al., 2005).

Transgenic animal models are more relevant than wild-type
nimals in testing the immunogenicity of therapeutic proteins
Hermeling et al., 2004; Brinks et al., 2011). With this model, anti-
ody formation was compared upon administration of oxidized
nd aged rhIFN-�2b samples at different pH’s, and the antibody
iter inversely correlated roughly with the unrecoverable amount
f protein, presumably particulates, in the samples (Hermeling
t al., 2006). In another example, administration of stressed IFN-
2b containing a large amount (>50% visually) of mainly covalent
ggregates in transgenic mice is no more immunogenic than the
ample containing a smaller amount of mainly non-covalent aggre-
ates (van Beers et al., 2010b).

Although a couple of mechanisms have been proposed for pro-
oting immunogenicity of particulates, the immunogenicity of

rotein particulates is not well understood at this time. While pro-
ein particulates may  possess repetitive structures and structural
hanges, most native antigenic sites might be altered or com-
letely covered in protein particulates. These particulates need
o be processed/digested for subsequent presentation by MHC  II

olecules on the surfaces of APCs. Since more conformationally
table proteins are less immunogenic due to slow unfolding or
igestion (Maas et al., 2007; Ohkuri et al., 2010), protein par-
iculates would be even less likely digested intracellularly due
o requirement of particulate dissolution. Dissolution of partic-
lates takes time and the measured immunogenicity within the
xperimental time scale may  not be long enough to pick up an
mmune signal, which could explain some of the negative results
Naim and van Oss, 1992). The immunogenicity of particulates vs
oluble aggregates or monomeric proteins needs further investiga-
ions.

Overall, investigations have been very limited on the immuno-
enicity of proteinaceous particulates. Lack of such studies is partly
ue to the challenges in generating, separating, and quantifying
arious kinds of proteinaceous particulates. The mechanisms of
rotein particulate formation and the associated amount, size,
ype, morphology, and reversibility can be significantly different
epending on the experimental conditions (Joubert et al., 2011).
ontrolled formation of protein particulates for a fixed amount and

n a specific size range is not easy to achieve simply based on the
rotein’s known aggregation behavior (He et al., 2010). The amount
f proteins in particulates may  have to be estimated roughly based
n the sizing results with certain assumptions on the shape and
ensity of particulates (Fradkin et al., 2011b).

. Lessons from vaccine development

Many protein vaccines have been developed and commercial-
zed. An effective vaccine has to be able to generate sufficient
mmunogenicity, which is measured in two aspects—humoral
mmunity (antibody formation) and cellular immunity. The lessons
earned during vaccine development in linking protein antigen
ggregation and humoral immunity can help understand the role
f protein aggregates in immunogenicity of protein products and
ice versa. Vaccines are purposely designed to induce an immune
esponse, and are often dosed along with adjuvants once or a few

imes, while protein therapeutics are generally dosed many times
r chronically with immunogenicity being a great concern.

Structural modifications in a protein antigen can have a strong
nfluence on immunogenicity. For example, K58I mutation in the
 Pharmaceutics 431 (2012) 1– 11 5

hemagglutinin (HA) induced a superior systemic and local anti-
body response after intranasal immunization due to improved virus
uptake by the nasal epithelial cells in mice (Krenn et al., 2011).
Addition of aldehyde groups into several monomeric model pro-
teins enhanced by several orders of magnitude the immunogenicity
in mice (Allison and Fearon, 2000). This result may explain why
presence of 0.2% formaldehyde in recombinant protective antigen
(rPA) vaccine induced significantly higher anti-rPA IgG titers than
the control vaccine (Little et al., 2007). These examples confirm
the potential enhancement of immunogenicity through chemical
degradations in protein products, which would contribute to the
enhanced immunogenicity of chemically-modified protein aggre-
gates.

As with protein products, formulation components, impuri-
ties or contaminants can strongly influence the immunogenicity
of a vaccine product. For example, several studies have demon-
strated significant enhancement of vaccine immunogenicity in
the presence of Cu2+ (Mustafaev and Norimov, 1990; Mustafaev
et al., 1996; Basalp et al., 2002). Metal ions are able to facilitate
complex formation among the same or different protein antigens
with increased stability by acting as “fasteners” between macro-
molecules (Mustafaev et al., 1996; Basalp et al., 2002). This binding
and stabilizing activity could make a decapeptide or even hep-
tapeptide immunogenic (Yang et al., 1993). As discussed before,
metal ions have been or proposed to be a source of aggregate-
induced immunogenicity in protein products (Hermeling et al.,
2005; Seidl et al., 2011). An obvious interpretation for the enhanced
immunogenicity is the facilitation of metal in forming a metal-
protein complex and/or stabilizing conformational epitopes in the
protein aggregates.

Does a protein antigen in a vaccine product have an enhanced
immunogenicity (antibody formation) upon oligomerization or
aggregation? As shown in Table 1, many oligomerized protein
antigens are more immunogenic than their monomeric forms
with or without adjuvants. Even disulfide-bonded dimers of HIV
Tat101 derivatives induced antibody response higher than the
monomer without an adjuvant in mice (Kittiworakarn et al., 2006).
Some of these results are easily understandable as oligomerized
antigens are structurally more like the surfaces of real foreign
microorganisms—trimeric structures on viruses (Lu et al., 1995;
Rao et al., 1995; Weldon et al., 2010), and polymeric “needle” on
bacteria (Barrett et al., 2010). Some of these protein antigens were
oligomerized or polymerized by using a cross-linking agent or a
polymer-inducing chain/motif. It is very possible that these added
components in the antigen would have some positive influence. It
has been shown that antigen immunogenicity can be significantly
impacted by attachment of a fatty acid (Oda et al., 2004), a his tag,
an often-used affinity tag for facilitating protein purification (Khan
et al., 2011), or a specific linker (Buskas et al., 2004; Lawatscheck
et al., 2007; Chia et al., 2010). The altered immunogenicity could
be due to the attachment-induced alteration in the structure, sta-
bility, flexibility, or aggregation tendency of the original antigen.
An obvious explanation for the enhanced immunogenicity of anti-
gen or protein aggregates is their enhanced repetitive structures,
like immunons. Antigens or haptens (10–20) on the surface of
pathogens (or aggregates in this case) in an organized and repeti-
tive form can activate B cells by cross-linking B-cell receptors in a
multivalent fashion (Vos et al., 2000). For example, the M2-specific
antibody levels were found to be proportional to the epitope den-
sity (1, 2, 4, 8 and 16 copies) on the influenza virus both in mice and
rabbits (Liu et al., 2004) and higher antibody titers were observed
for tandem multi-peptide antigen, derived from human papillo-

mavirus (HPV), relative to the mono-peptide form in mice (Rubio
et al., 2009).

In other cases, aggregation of a protein antigen may  not enhance,
or even reduce the immunogenicity. Ovalbumin is a common
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odel protein antigen for screening adjuvants. Presence of aggre-
ated ovalbumin failed to increase the level of anti-OVA IgG
elative to non-aggregated protein in mice (Allison and Fearon,
000). Administration of soluble non-covalent and disulfide-linked
valbumin aggregates (adjuvanted with Al(OH)3), induced by
eat denaturation, was less immunogenic than the native pro-
ein with the threshold immunogenic dose 100 times higher in

ice (Koch et al., 1996). The reduction in immunogenicity was
ttributed to a lower epitope density in denatured ovalbumin.
his is a reasonable interpretation, as antigen aggregation can
over some antigenic sites (Jain and Roy, 2011). Similarly, Valiente-
abioud (Valiente-Gabioud et al., 2011) examined the number of

epeats (repetitiveness) of Flagelar Repetitive Antigen (FRA) on
he immunogenicity of the antigen and increasing the number of
epeats (1, 2, 3, and 4) did not increase the antibody response in
ice. As mentioned above, the negative effect could be due to non-

ptimized spacing of epitopes, and/or potentially non-stimulatory
inding to B-cell receptors (Sulzer and Perelson, 1997).

Do protein antigens have an enhanced immunogenicity upon
articulate formation? Clearly, if protein antigens could self assem-
le into virus-like particles, significant immunogenicity can occur
ithout an additional adjuvant (Jegerlehner et al., 2002) (Warfield

t al., 2007; Zhang et al., 2011). Multimeric virus-like particles
VLPs) of the virus surface proteins have been shown to induce

 higher antibody titer than the monomeric proteins in mice
Schirmbeck et al., 1994; Denis et al., 2007), although exceptions do
xist (Valdes et al., 2009). Further aggregation of VLPs has resulted
n either no change (Babiuk et al., 2004; Caparros-Wanderley et al.,
004; Jones et al., 2011), or a reduction in antibody formation
Schirmbeck et al., 1995). Again, one of the possible reasons is the
artial coverage of the antigenic sites.

What happens if protein form particulates other than VLPs?
 study, claimed to be the first to evaluate immunogenicity
f single-component protein particulates, demonstrated superior
mmunogenicity (high anti-OVA titers) of particulate ovalbumin
prepared by dense carbon dioxide) relative to solubilized ovalbu-

in  at a dose of 10 �g in mice (White et al., 2008). It was noted
hat the soluble ovalbumin was prepared by dissolving the partic-
late ovalbumin in NaOH solutions, followed by pH neutralization.

t is known that proteins can be rapidly degraded in acidic or basic
olutions, and the soluble ovalbumin could have been degraded in
he preparation process, resulting in a loss of epitopes for reduced
mmunogenicity, as the integrity of the soluble ovalbumin was
ever confirmed.

Another argument for enhancing immunogenicity by protein
articulates is their non-specific adjuvantation effect (Fradkin et al.,
009). The role of non-specific polymeric or lipid-based particulates

n enhancing vaccine immunogenicity has been well documented
ith mechanisms of action mimicking those of aluminum salt adju-

ants (Wang and Singh, 2011). Particulates of a variety of polymers
ave been shown to be effective adjuvants (Wang and Singh, 2011).
heir relative effects depend not only on the size and type of
olymers (Fifis et al., 2004; Moschos et al., 2005; Wendorf et al.,
008; Oyewumi et al., 2010), but also on many other factors, such
s antigen adsorption capacity, strength, stability, or efficiency of
articulate uptake by competent immune cells (Morefield et al.,
005; Thomas et al., 2010). In most cases, antigens need to be
ncapsulated in or attached to these polymers either physically
r chemically for immunogenicity enhancement (Slutter et al.,
010).

Base on the information, one would think intuitively that protein
articulates, formed through physical or chemical linkages, could

ct as an adjuvant in a similar manner, and enhance the immuno-
enicity of a protein product (Xiang et al., 2006). One could also
rgue that protein particulates are covered with protein molecules,
nd the surface protein molecules still have native or close to native
 Pharmaceutics 431 (2012) 1– 11

structures for enhancing immunogenicity. Two  apparent differ-
ences, however, are noted here. The first one is the rigidity of these
particulates. While the polymeric particulates as vaccine adjuvants
are generally rigid in solution, most protein particulates are likely
to be amorphous, more flexible and pliant except fibrils. The second
difference is the quantity of these particulates. While the amount
of polymeric particulates, used as vaccine adjuvants, is relatively
large, up to mg  for aluminum salts, protein products would have,
if any, an insignificant amount of protein particulates except for a
mAb  product, where a non-detectable fraction of protein particu-
lates, 0.022% by routine SEC, would be equivalent to about 20 �g/mL
at a high protein concentration of 90 mg/mL  (Wuchner et al., 2010).
It is obvious that additional data are still needed to confirm whether
a small amount of loose protein particulates or protein fibrils would
be able to make a significant difference in immunogenicity for a
protein product.

In relation to protein particulates, other contaminating partic-
ulates in a protein product may  enhance immunogenicity, such
as glass (Fradkin et al., 2011a)  or stainless steel (Van Beers et al.,
2012) particulates. It is noted that a large quantity of such par-
ticulates may  be needed for immunogenicity enhancement. For
example, generation of an equivalent level of immunogenicity
(IgG1), induced after administration of recombinant murine growth
hormone (mGH) adsorbed on alum, requires the same dose of mGH
adsorbed on glass particles exceeding the amount of alum by 76
times (Fradkin et al., 2011b). Administration of rhIFN-�1a adsorbed
on stainless steel microparticles at 2270 mg/mg  protein induced
more immunogenicity (IgG titer) than free protein fractions or pro-
tein mixtures with glass or polystyrene particles in transgenic mice
(Van Beers et al., 2012). It is unlikely that such a large amount
of foreign particles would be present or contaminated in a pro-
tein product. Nonetheless, these results indicate the importance to
monitor all the particulates and to determine their composition in
protein products.

5. Protein aggregation in a biological milieu

Pharmaceutical scientists and regulatory agencies have long
recognized the necessity of monitoring the behavior and fate of
administered protein products. This necessity was more from a
pharmacokinetic and/or pharmacodynamic point of view rather
than from an immunological point of view. This is understandable,
as the clearance of a product from the injection site or bloodstream
cannot be predicted accurately simply from the type or the size of
the product (Koide et al., 2010). Recent recognition of the poten-
tial immunological significance after administration of a protein
product has not been translated into any significant efforts in exper-
imental investigations in this area, partly due to the complication
of a biological system and the challenges associated with analytical
methodologies. Novel analytical methods are still being developed
to characterize protein aggregates in a biological milieu (Filipe et al.,
2011; Mach and Arvinte, 2011).

An obvious question would be the short-term and long-term
fate of a protein as well as its aggregates after administration. Many
proteins are not stable at a body temperature of 37 ◦C and aggre-
gate easily, such as granulocyte-colony stimulating factor (GCSF)
(Krishnan et al., 2002; Raso et al., 2005), recombinant human ker-
atinocyte growth factor (rhKGF) (Chen et al., 1994), recombinant
human platelet-activating factor acetylhydrolase (rhPAF-AH) (Chi
et al., 2005a),  rhIL-1ra (Chi et al., 2005b; Roy et al., 2006), and
even IgG molecules (Jiskoot et al., 1990; Chen et al., 2003; Van

Buren et al., 2008). Similarly, many proteins are usually stable in
a narrow pH range and any pH outside this narrow range causes
rapid protein aggregation, such as IL-1� (Gu et al., 1991). Several
proteins have been shown to aggregate readily at neutral to weakly
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asic conditions at a moderate temperature, suchas, rhGCSF at
H 7, (Thirumangalathu et al., 2006), rhKGF at pH 7 (Chen et al.,
994) and mutated apomyoglobin at pH 7.0 (Vilasi et al., 2008)
nd botulinum neurotoxin at pH 8.0 (Roy et al., 2008). There-
ore, native proteins could rapidly aggregate in a biological milieu
ue to the temperature and/or pH changes after administration.
nderstanding the aggregation potential of a protein product after
dministration would be valuable through in vitro as well as in vivo
valuations.

Likewise, protein aggregates/particulates present in a pro-
ein product at 2–8 ◦C or room temperature could reverse back
o monomers or solubilized due to the temperature increase
nd/or pH change after administration. High-temperature-induced
rotein disaggregation has been reported for serum cryoglobu-

ins (Ferri et al., 2002; Ramsland and Farrugia, 2002) and IgG1
Sukumar et al., 2004). The pH-induced reversibility of aggrega-
ion has been observed for some proteins, such as human muscle
cylphosphatase (Calamai et al., 2005), and human interferon-

 (Mulkerrin and Wetzel, 1989). If monomerization of soluble
ggregates or dissolution of insoluble aggregates occurs due
o the temperature and/or pH change upon administration,
ould immunogenicity of protein aggregates be less of a con-

ern? If yes, could other alternative physiological mechanisms
e utilized to process the excessive amount of protein aggre-
ates after administration for the same purpose (Gebbink et al.,
009)?

Microparticles, consisting mainly of phospholipids and pro-
eins and ranging in sizes from 0.1 to 2 �m,  are circulating in the
lood, performing many functions related to coagulation, vascu-

ar function, inflammation, and stimulating cytokine release, etc.
Puddu et al., 2010). Such components can potentially interact with

 protein product and/or its aggregates after administration and
hange their physiological and/or biochemical behavior. For exam-
le, fibrillogenesis of islet amyloid polypeptide (IAPP) is enhanced
y >10-fold with human tissue-derived phospholipids (Knight
nd Miranker, 2004). Membranes containing phosphatidylserine
PS), a negatively charged phospholipid, induce a rapid for-

ation of fibers for a variety of proteins, including lysozyme,
nsulin, glyceraldehyde-3-phosphate dehydrogenase, myoglobin,
ransthyretin, cytochrome c, histone H1, and alpha-lactalbumin
Zhao et al., 2004). A reverse event could be possible, too. It
as been demonstrated that dioleyl phosphatidylcholine (DOPC)
ould interact with mature A� amyloid fibrils and revert the
nert fibrils to neurotoxic protofibrils (not monomers) (Martins
t al., 2008). Thus, proteins, that do not have a strong aggrega-
ion tendency, can form protein aggregates due to interactions
ith these tissue and/or cellular components. Will this type of

nteractions change the immunogenicity potential of a protein
roduct? Lipids and liposomes have been recognized as effec-
ive vaccine adjuvants to initiate an enhanced antibody response
Calderon et al., 2006; Hartikka et al., 2009; Shlapobersky et al.,
009). It is conceivable that protein interactions with lipids could

ead to a significant change in immunogenicity of a protein prod-
ct after administration. No literature reports, however, have been
ound on the evaluation of such effects in vivo. In comparison,
se of dicaproyl phosphatidylserine, a short-chain water-soluble
hospholipid, reduced the immunogenicity of rFVIII in hemophilia

 mice (Purohit and Balasubramanian, 2006). Dicaproyl phos-
hatidylserine was shown to interact with rFVIII, causing subtle
hanges in the tertiary and secondary structure of the light chain.
imilarly, phosphatidylserine (PS)-containing liposomes can also
ind to the rFVIII light chain for a lower total- and inhibitory

ntibody titers in hemophilia A mice (Ramani et al., 2008). The
indings may  cause a reduction in the rate of antigen process-

ng by proteolytic enzymes (Ramani et al., 2008) and/or block
he antigenic site found in the light chain (Peerlinck et al., 1997).
 Pharmaceutics 431 (2012) 1– 11 7

These results possibly explain why aggregated FVIII showed less
immunogenicity than monomeric FVIII, as the lipid-binding sites
and/or antigenic sites on the protein may  be hidden in the aggre-
gated protein.

Certain protein interactions with tissue components poten-
tially lead to chemical modifications in protein or its aggregates
for enhanced immunogenicity. Since disulfide-bonded dimers of
HIV Tat101 derivatives induced stronger antibody response than
the monomer without an adjuvant in mice (Kittiworakarn et al.,
2006), in vivo disulfide formation of such compounds in an
oxidative environment could lead to enhanced immunogenicity.
Polyvinylpyrrolidone, not polyvinylphenol (a structurally similar
polymer), has been shown to be immunogenic in rabbits, which
was attributed to possible conjugation with host proteins via the
carbonyl group of the lactam ring for enhanced immunogenicity
(Naim and van Oss, 1992).

The relative number and density of immune cells are different in
different tissues and biological fluids to initiate a different degree
of immune response. Partly because of this, the route of product
administration strongly influences the outcome of immunogenic-
ity. It is generally believed that intravenous (IV) injection would
lead to the least immune response relative to other common admin-
istration routes, such as intradermal (ID), subcutaneous (SC) and
intramuscular (IM) injections (Schellekens, 2002, 2003). Among
the non-IV routes, ID injection seems to initiate equal or greater
immune response than SC or IM injections, presumably because
the dermis contains more dendritic cells (Bonnotte et al., 2003; Chiu
et al., 2009; Kunzi et al., 2009; Nicholson et al., 2009). SC administra-
tion generally leads to an equal or higher immunogenicity than IM
administration in both mice and human subjects (Braun et al., 1997;
Prummer, 1997; Perini et al., 2001; Stertman et al., 2004; Martin
et al., 2010). Exceptions do exist. For example, IV administration
of human recombinant FVIII in hemophilia A mice has generated
equal amount of neutralizing antibodies, even though the total
antibody titer is lower relative to SC administration (Peng et al.,
2009). The frequency for the formation of IL-2-binding antibodies
are similar after IV or SC administration, although the formation
of neutralizing antibodies is associated with SC administration in
patients (Prummer, 1997). The time of administration in a day
could also influence the immunogenicity outcome (Cernysiov et al.,
2010).

6. Regulatory considerations

It is generally understood that the level of soluble aggregates in
a protein product should be no more than 5–10%. The limits on the
number of insoluble proteinaceous particulates in all size ranges
have not been widely agreed upon. As mentioned above, the FDA
has increased their scrutiny on the level of subvisible particulates
of <10 �m in size. Should a specification limit be set on particulates
in this size range for lot release or stability evaluation? The answer
is probably no, as the available data appear not consistent enough
to support such a limit. On the other hand, these small subvisi-
ble particulates have the potential for enhanced immunogenicity
and their size and number can be an indicator of consistency for
a manufacturing process. Therefore, these particulates should be
monitored routinely. On the other hand, all the currently available
methods for particle analysis have certain limitations (Narhi et al.,
2009; den Engelsman et al., 2011; Zolls et al., 2011). A clear need
is to develop suitable analytical methods for simultaneous deter-
mination of particulates’ quantity, size, shape, and composition in

this and other size ranges.

For subvisible particulates of larger size, pharmaceutical compa-
nies generally use USP <788> as a release and stability specification.
Traditionally, these limits were set for small-molecule drugs based
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n a safety concern that particles of larger than 10 �m lead to
cclusion of capillary blood vessels. Would protein particulates in
he same size range (>10 �m)  present a similar level of risk? An
bvious regulatory gap is the lack of a similar guideline designed
pecifically for protein products. For severely aggregation-prone
roteins, USP <788> is difficult to meet. A potential option would
e to establish two regulatory limits, one for foreign particulates,
nd one for proteinaceous particulates. Even if such a distinction is
llowed, what data would be needed to justify a limit on proteina-
eous particulates? Would batch analysis plus immunogenicity
ata be adequate? The answer is probably no. In vivo safety data
ill likely be needed, or the in vivo behavior of protein particulates
eeds to be evaluated.

Another apparent gap is the lack of a similar pharmacopeial
uidance on the particulate limits in the diluted infusion solutions
repared before administration. Many protein products meet the
articulate limits easily in the original product container either as

 liquid product or after reconstitution for a lyophilized product.
he behavior of a protein product could be significantly differ-
nt upon further dilution into commonly-used infusion solutions
uch as saline, half normal saline, D5W, etc. and result in a signifi-
ant difference in particulate counts. Protein aggregation could take
lace right after dilution (Agarkhed, 2011). In addition, a number
f product vials may  be needed for pooling into a single infu-
ion bag/container. This additional sample handling and transfer
an introduce additional intrinsic and extrinsic particulate matters.
ombination of all these factors can easily lead to particulate counts
xceeding the limit for large volume injections, if the total infu-
ion volume is >100 mL.  An obvious option is to use an in-line low
rotein-binding filter before infusion and a single filtration step has
een proven to be effective in reducing the counts of small particles
Narhi et al., 2009). If the diluent is not compatible with the product,
owever, particulates can re-form even after filtration (Agarkhed,
011).

The current USP requires that all injections be “essentially free
rom visible particles”. Originally regulated for small-molecule
rugs, particulate matters in injections mean extraneous mobile
ndissolved particles, other than gas bubbles, unintentionally
resent in the solutions. The high aggregation tendency of pro-
eins makes it difficult to develop most protein products essentially
ree of particulates and presence of a small amount of subvisible
nd/or visible proteinaceous particulates are often unavoidable.
hould the description “essentially free from visible particles” be
trictly applied to protein products? The answer is probably no,
ecause protein particulates can be formed during manufactur-

ng, inspection, and/or storage, and based on the definition, are not
nintentionally present in the solutions. Therefore, some protein
roducts are described as ‘may contain fiber-like particles”, with
he understanding that these particles are mainly proteinacious in
ature. A number of approved protein products contain such lan-
uages in their package inserts (e.g. Campath, Vectibix, Stellara,
tc.). Could these proteinaceous particulates, if not easily dissolv-
ble in the circulation, pose similar level of safety concern as the
ndissolvable foreign particles, aside from their immunogenicity
oncern? What are the possible options for developing a commer-
ial product for severely aggregation-prone proteins? One obvious
ption is to demonstrate safety of these particulates in human
ubjects and set a specification limit accordingly. This would be
ifficult to pursue, because there are no easy methods currently
or characterization of protein particulates in terms of quantity,
hape, rigidity, composition, and surface properties, all of which

ould contribute to product impact in humans. The other option is
o remove physically all protein particulates by using an in-line low
rotein-binding filter immediately before administration. The lat-
er option is relatively easy and has been adopted for many protein
roducts.
 Pharmaceutics 431 (2012) 1– 11

7. Summary

In view of the current literature, the effect of protein aggregates
on the immunogenicity of protein products has been evaluated
in a limited number of studies. Results from these studies, albeit
lack of complete consistency, generally point to a linkage between
protein aggregation and enhanced immunogenicity. Limited clin-
ical observations appear to support such a claim (Weksler et al.,
1970; Moore and Leppert, 1980; Giovannoni et al., 2007). Yet, the
structural features in protein aggregates truly responsible for the
enhanced immunogenicity is far from being clear and need further
investigations (Joubert et al., 2011).

The increased attention of regulatory agencies to the immuno-
genicity potential of protein aggregates/particulates is understand-
able because of the safety and efficacy concerns. On the other hand,
the type and level of protein aggregates/particulates that lead to any
enhancement of clinically relevant immunogenicity are unknown.
Since protein aggregates are associated with product quality, toxic-
ity, and potentially enhanced immunogenicity, the level of protein
aggregates in protein products should be considered a critical qual-
ity attribute (CQA) and be controlled and monitored during product
development and manufacturing processes.

The current gaps and proposed future directions are summa-
rized as follows:

• The mechanisms of protein-induced immune response (either
as a product or vaccine antigen) need further elucidation, along
with factors that dominate or control the immune response and
tolerance induction.

• Additional efforts are needed to understand the structural fea-
tures in proteins and protein aggregates truly responsible for
immunogenicity, and to develop methods for identifying the
immunogenic sites/epitopes.

• The mechanisms for the non-specific contribution of proteina-
ceous particulates as adjuvants to the immunogenicity of proteins
need further confirmation.

• The in vivo behavior and fate of protein products and their aggre-
gates after administration need to be examined during product
development.

• Development of robust and high-throughput analytical instru-
mentation/methods is needed for quantitation of proteinaceous
and non-proteinaceous particulates with simultaneous analysis
of shape, density, and composition.
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